
Book Recommendations Using RAG

Rohan Arora

DATS 4001: Data Science Capstone

Abstract

This project introduces a content-based book recommendation system that uses large language

models to suggest titles based on book descriptions and emotional tone, rather than user history.

The system integrates zero-shot genre classification, sentiment analysis, and vector similarity

search, and is built using Python tools such as LangChain, Hugging Face, and Gradio. Drawing

on data from Goodreads and Open Library, it recommends books through a simple web interface.

Video Presentation with Demonstration of Application

https://youtu.be/PFTunN5lSh8?si=VQZICjNbiqtnFuLG&t=364

I. Introduction

With millions of new books published each year, readers often struggle to find novels that

match their interests. Recommendation systems on sites like Amazon or Goodreads aim to solve

this, but these systems rely on collaborative filtering, which depends on user ratings, reviews, and

the individuals' purchasing data. These systems fail when data is sparse or when books lack user

feedback. A content-based approach offers an alternative by focusing on the content of the books

themselves, rather than user behavior. This project follows this approach using large language

models (LLMs). Using natural language processing techniques, the system analyzes book

descriptions and emotional tone to match users with titles that match their interests. The

recommendation engine combines vector-based similarity searches, zero-shot classification, and

sentiment analysis to provide meaningful suggestions without requiring user history.

This system is built in Python, using packages like LangChain for document handling,

Hugging Face Transformers for classification, and Gradio to create an interactive web interface.

Users begin by entering a short book description, selecting a genre, and choosing a desired

emotional tone. The system uses this input to filter and rank books from a pre-processed dataset.

It first narrows down the dataset using zero-shot genre classification, then applies emotion-based

filtering using sentiment analysis. Finally, it runs a vector similarity search between the user’s

description and the remaining candidates to find the most semantically similar titles. Unlike

systems based on popularity and user history, the model evaluates both what the book is about

1

and how it feels. Emotion classification helps match with moods such as sadness, hope, or

excitement. The system then returns the top eight most relevant books, each accompanied by key

metadata, such as title, author, and description. This setup enables a more nuanced book

discovery process that goes beyond surface-level features to capture a book’s content and quality.

II. Data

A. Sources

 This project draws on two sources to create a dataset of books: a Kaggle dataset scraped

from the Goodreads API and the Open Library API. Together, these sources provide a blend of

structured and unstructured text, which supports both the machine learning pipeline and the user

interface. The Kaggle dataset includes 6,810 books containing fields such as ISBN-13, title,

subtitle, authors, categories, description, published year, average rating, and number of pages.

These features provide a solid foundation for evaluating basic content and bibliographic details.

Still, the descriptions in this dataset can be brief or missing, which limits their use for

content-based modeling. To add to this existing dataset, the Open Library API was used to

retrieve 26,266 books along with richer metadata. This API also provides access to edition

counts, ebook availability, and preview links, adding depth to the dataset.

B. Data Cleaning and EDA

 Before building the recommendation system, both datasets required significant cleaning

to ensure consistency and quality in the suggestions. An initial inspection of the Kaggle dataset

revealed that 262 books did not have descriptions, which are necessary for the recommendation

system, so these entries were removed. After analyzing the distribution of description lengths,

most entries were short, with a length under 250 words and a mean of 66 words. However,

descriptions under 20 words were often vague or lacked meaningful detail. Filtering out these

2

descriptions left 5,595 books. Lastly, the dataset splits titles into two different fields: title and

subtitle. To improve clarity, the fields were aggregated into a single string. This step preserved

important context; for example, combining “I Am That” with its subtitle, “Talks with Sri

Nisargadatta Maharaj”, helps the reader and model understand the subject matter better.

 A similar process was applied to the Open Library data, starting with removing books

with descriptions, which was a sizable chunk of the data - 12,719 books. Compared to the

Kaggle dataset, the descriptions were much longer and more descriptive, with a mean length of

114 words. Like the Kaggle dataset, books with fewer than 20 words were excluded due to the

lack of detail. This filtering left 8,751 books for the merged datasets, which were merged on the

unique identifier, ISBN-13. By combining two datasets, this provided the model with more

information that can be used to acquire accurate book recommendations.

III. Model Setup

The model pipeline integrates three core components: zero-shot genre classification,

emotion-based sentiment analysis, and vector-based similarity search. Each stage filters or ranks

3

books to help return recommendations that match the user’s description, preferred genre, and

desired emotional tone.

A. Genre Classification

The initial step narrowed down the large variety of category labels, totaling 9,099 distinct

categories, using a combination of rule-based mapping and zero-shot classification. First, the

most common genres, such as biography, autobiography, and history, were manually categorized

into fiction, nonfiction, children’s fiction, and children’s nonfiction. For books with multiple

categories or ultra-specific genres, like children of physicians, a zero-shot classification model

(facebook/bart-large-mnli) was used to assign them to the four categories listed above. This

model evaluates the likelihood of a category belonging to a given set of categories without

4

requiring retraining. It correctly predicted the genre 89% of the time when tested against the

existing labeled examples.

B. Sentiment/Emotion Classification

To further refine results by tone, the system uses the emotion-english-distilroberta-base

model to analyze the emotional content in each book description. After testing this model against

the entire book description, it yielded inaccurate results, as the model would often focus on one

or two sentences in the description for its analysis. To address this, descriptions were split into

sentences, truncated based on token length, and passed through the classifier to identify seven

emotions: anger, disgust, fear, joy, sadness, surprise, and neutral. The model output scores for

each emotion, and the highest score across all sentences

were retained for each label.

C. Vector Embedding and Similarity Search

 The system then generated vector embeddings from

the book descriptions to support content matching. Vector

embeddings are a numerical representation of text in a

high-dimensional space, where similar texts are positioned

closer to each other. To create these embeddings, a

simplified text file was created containing only the

ISBN-13 and description variables. This smaller file was

passed into a LangChain-based embedding pipeline using

the OpenAI Embeddings API. LangChain handles this

through a structured pipeline that splits the documents into

manageable chunks, processes them via a

5

transformer-based language model, and generates dense 1536-dimensional vectors. Each vector

captures features of the text, such as thematic content, genre-related vocabulary, and emotional

undertones, allowing the system to capture nuanced similarities even when explicit keywords

differ. These vectors were stored in a vector database, enabling fast similarity searches across all

of the embedded documents. This workflow follows the retriever and embedding concepts

defined in LangChain’s documentation: embeddings act as a projection of meaning into a vector

space, while the receiver uses similarity metrics to return the most relevant documents given a

query vector.

When a user inputs a custom query or mentions a specific book, that input is embedded

using the same process. The system then computes the cosine similarity between the user’s input

vector and the precomputed book vectors to rank books based on semantic closeness. Cosine

similarity compares the angle between vectors, making it ideal for detecting shared meaning. For

example, if a user searches for a “gritty detective thriller,” the system may give a book described

as a “dark mystery” if the underlying semantic vectors are close. The top matches are then

reconnected to the full dataset using ISBN-13 as the key, and the genre and emotion filters are

applied. Ensuring that only books that match the user’s selected category and tone are included in

the recommendations.

6

IV. Results

 The final system offers an intuitive dashboard for book recommendations. Users enter a

sort description of the type of book they are looking for, select a genre, and choose an emotional

tone. In return, the system displays eight recommended books that align with the user’s inputs

across all three dimensions: content, category, and tone. The recommendations are displayed

with relevant metadata, the title, author(s), and descriptions.

 However, this system does have limitations. Since it only uses the descriptions and not

full book content, recommendations are based solely on how they are described, which can lead

to surface-level matches when descriptions are vague or poorly written. Emotion classification

also depends on sentence-level context and can misinterpret descriptions with shifting or

ambiguous tone. These constraints highlight the importance of high-quality descriptions and

7

suggest opportunities for future refinement, such as incorporating full-text analysis or additional

metadata like user tags or themes.

V. Bibliography

Trivedi, Ayushi. (2024, October 4). Top 6 Books on Retrieval Augmented Generation (RAG).
Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2024/10/books-on-rag/

Castillo, D. J. (n.d.). 7k Books with Metadata [Data set]. Kaggle.

https://www.kaggle.com/datasets/dylanjcastillo/7k-books-with-metadata

Dhapre, M. (2024, February 2). Book Recommendation using Retrieval Augmented Generation.
Medium.

https://medium.com/@mrunmayee.dhapre/book-recommendation-using-retrieval-augmen
ted-generation-52965b71ed16

Jonathandika. (n.d.). llm-recommender-system. GitHub.

https://github.com/Jonathandika/llm-recommender-system

Open Library. (n.d.). Developer Center / APIs. Open Library.

https://openlibrary.org/developers/api

8

https://www.analyticsvidhya.com/blog/2024/10/books-on-rag/
https://www.analyticsvidhya.com/blog/2024/10/books-on-rag/
https://www.kaggle.com/datasets/dylanjcastillo/7k-books-with-metadata
https://medium.com/@mrunmayee.dhapre/book-recommendation-using-retrieval-augmented-generation-52965b71ed16
https://medium.com/@mrunmayee.dhapre/book-recommendation-using-retrieval-augmented-generation-52965b71ed16
https://github.com/Jonathandika/llm-recommender-system
https://openlibrary.org/developers/api

