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Abstract 

This project introduces a content-based book recommendation system that uses large language 

models to suggest titles based on book descriptions and emotional tone, rather than user history. 

The system integrates zero-shot genre classification, sentiment analysis, and vector similarity 

search, and is built using Python tools such as LangChain, Hugging Face, and Gradio. Drawing 

on data from Goodreads and Open Library, it recommends books through a simple web interface.  

Video Presentation with Demonstration of Application 

 

https://youtu.be/PFTunN5lSh8?si=VQZICjNbiqtnFuLG&t=364


 

I. Introduction 

With millions of new books published each year, readers often struggle to find novels that 

match their interests.  Recommendation systems on sites like Amazon or Goodreads aim to solve 

this, but these systems rely on collaborative filtering, which depends on user ratings, reviews, and 

the individuals' purchasing data. These systems fail when data is sparse or when books lack user 

feedback. A content-based approach offers an alternative by focusing on the content of the books 

themselves, rather than user behavior. This project follows this approach using large language 

models (LLMs). Using natural language processing techniques, the system analyzes book 

descriptions and emotional tone to match users with titles that match their interests. The 

recommendation engine combines vector-based similarity searches, zero-shot classification, and 

sentiment analysis to provide meaningful suggestions without requiring user history.  

This system is built in Python, using packages like LangChain for document handling, 

Hugging Face Transformers for classification, and Gradio to create an interactive web interface. 

Users begin by entering a short book description, selecting a genre, and choosing a desired 

emotional tone. The system uses this input to filter and rank books from a pre-processed dataset. 

It first narrows down the dataset using zero-shot genre classification, then applies emotion-based 

filtering using sentiment analysis. Finally, it runs a vector similarity search between the user’s 

description and the remaining candidates to find the most semantically similar titles. Unlike 

systems based on popularity and user history, the model evaluates both what the book is about 
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and how it feels. Emotion classification helps match with moods such as sadness, hope, or 

excitement. The system then returns the top eight most relevant books, each accompanied by key 

metadata, such as title, author, and description. This setup enables a more nuanced book 

discovery process that goes beyond surface-level features to capture a book’s content and quality.  

II. Data  

A. Sources 

 This project draws on two sources to create a dataset of books: a Kaggle dataset scraped 

from the Goodreads API and the Open Library API. Together, these sources provide a blend of 

structured and unstructured text, which supports both the machine learning pipeline and the user 

interface. The Kaggle dataset includes 6,810 books containing fields such as ISBN-13, title, 

subtitle, authors, categories, description, published year, average rating, and number of pages. 

These features provide a solid foundation for evaluating basic content and bibliographic details. 

Still, the descriptions in this dataset can be brief or missing, which limits their use for 

content-based modeling. To add to this existing dataset, the Open Library API was used to 

retrieve 26,266 books along with richer metadata. This API also provides access to edition 

counts, ebook availability, and preview links, adding depth to the dataset.  

B. Data Cleaning and EDA 

 Before building the recommendation system, both datasets required significant cleaning 

to ensure consistency and quality in the suggestions. An initial inspection of the Kaggle dataset 

revealed that 262 books did not have descriptions, which are necessary for the recommendation 

system, so these entries were removed. After analyzing the distribution of description lengths, 

most entries were short, with a length under 250 words and a mean of 66 words. However, 

descriptions under 20 words were often vague or lacked meaningful detail. Filtering out these 
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descriptions left 5,595 books. Lastly, the dataset splits titles into two different fields: title and 

subtitle. To improve clarity, the fields were aggregated into a single string. This step preserved 

important context; for example, combining “I Am That” with its subtitle, “Talks with Sri 

Nisargadatta Maharaj”, helps the reader and model understand the subject matter better.  

 

 A similar process was applied to the Open Library data, starting with removing books 

with descriptions, which was a sizable chunk of the data - 12,719 books. Compared to the 

Kaggle dataset, the descriptions were much longer and more descriptive, with a mean length of 

114 words. Like the Kaggle dataset, books with fewer than 20 words were excluded due to the 

lack of detail. This filtering left 8,751 books for the merged datasets, which were merged on the 

unique identifier, ISBN-13. By combining two datasets, this provided the model with more 

information that can be used to acquire accurate book recommendations.  

III. Model Setup 

The model pipeline integrates three core components: zero-shot genre classification, 

emotion-based sentiment analysis, and vector-based similarity search.  Each stage filters or ranks 
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books to help return recommendations that match the user’s description, preferred genre, and 

desired emotional tone.  

A. Genre Classification 

 

The initial step narrowed down the large variety of category labels, totaling 9,099 distinct 

categories, using a combination of rule-based mapping and zero-shot classification. First, the 

most common genres, such as biography, autobiography, and history, were manually categorized 

into fiction, nonfiction, children’s fiction, and children’s nonfiction. For books with multiple 

categories or ultra-specific genres, like children of physicians, a zero-shot classification model 

(facebook/bart-large-mnli) was used to assign them to the four categories listed above. This 

model evaluates the likelihood of a category belonging to a given set of categories without 
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requiring retraining. It correctly predicted the genre 89% of the time when tested against the 

existing labeled examples.  

B. Sentiment/Emotion Classification 

To further refine results by tone, the system uses the emotion-english-distilroberta-base 

model to analyze the emotional content in each book description. After testing this model against 

the entire book description, it yielded inaccurate results, as the model would often focus on one 

or two sentences in the description for its analysis. To address this, descriptions were split into 

sentences, truncated based on token length, and passed through the classifier to identify seven 

emotions: anger, disgust, fear, joy, sadness, surprise, and neutral. The model output scores for 

each emotion, and the highest score across all sentences 

were retained for each label.  

C. Vector Embedding and Similarity Search 

 The system then generated vector embeddings from 

the book descriptions to support content matching. Vector 

embeddings are a numerical representation of text in a 

high-dimensional space, where similar texts are positioned 

closer to each other. To create these embeddings, a 

simplified text file was created containing only the 

ISBN-13 and description variables. This smaller file was 

passed into a LangChain-based embedding pipeline using 

the OpenAI Embeddings API. LangChain handles this 

through a structured pipeline that splits the documents into 

manageable chunks, processes them via a 
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transformer-based language model, and generates dense 1536-dimensional vectors. Each vector 

captures features of the text, such as thematic content, genre-related vocabulary, and emotional 

undertones, allowing the system to capture nuanced similarities even when explicit keywords 

differ. These vectors were stored in a vector database, enabling fast similarity searches across all 

of the embedded documents. This workflow follows the retriever and embedding concepts 

defined in LangChain’s documentation: embeddings act as a projection of meaning into a vector 

space, while the receiver uses similarity metrics to return the most relevant documents given a 

query vector.   

When a user inputs a custom query or mentions a specific book, that input is embedded 

using the same process. The system then computes the cosine similarity between the user’s input 

vector and the precomputed book vectors to rank books based on semantic closeness. Cosine 

similarity compares the angle between vectors, making it ideal for detecting shared meaning. For 

example, if a user searches for a “gritty detective thriller,” the system may give a book described 

as a “dark mystery” if the underlying semantic vectors are close.  The top matches are then 

reconnected to the full dataset using ISBN-13 as the key, and the genre and emotion filters are 

applied. Ensuring that only books that match the user’s selected category and tone are included in 

the recommendations.  
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IV. Results  

 The final system offers an intuitive dashboard for book recommendations. Users enter a 

sort description of the type of book they are looking for, select a genre, and choose an emotional 

tone. In return, the system displays eight recommended books that align with the user’s inputs 

across all three dimensions: content, category, and tone. The recommendations are displayed 

with relevant metadata, the title, author(s), and descriptions. 

 

 However, this system does have limitations. Since it only uses the descriptions and not 

full book content, recommendations are based solely on how they are described, which can lead 

to surface-level matches when descriptions are vague or poorly written. Emotion classification 

also depends on sentence-level context and can misinterpret descriptions with shifting or 

ambiguous tone. These constraints highlight the importance of high-quality descriptions and 
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suggest opportunities for future refinement, such as incorporating full-text analysis or additional 

metadata like user tags or themes.  
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